Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 161: 105502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382227

RESUMO

How diverse animal communication signals have arisen is a question that has fascinated many. Xenopus frogs have been a model system used for three decades to reveal insights into the neuroendocrine mechanisms and evolution of vocal diversity. Due to the ease of studying central nervous system control of the laryngeal muscles in vitro, Xenopus has helped us understand how variation in vocal communication signals between sexes and between species is produced at the molecular, cellular, and systems levels. Yet, it is becoming easier to make similar advances in non-model organisms. In this paper, we summarize our research on a group of frog species that have evolved a novel hind limb signal known as 'foot flagging.' We have previously shown that foot flagging is androgen dependent and that the evolution of foot flagging in multiple unrelated species is accompanied by the evolution of higher androgen hormone sensitivity in the leg muscles. Here, we present new preliminary data that compare patterns of androgen receptor expression and neuronal cell density in the lumbar spinal cord - the neuromotor system that controls the hind limb - between foot-flagging and non-foot-flagging frog species. We then relate our work to prior findings in Xenopus, highlighting which patterns of hormone sensitivity and neuroanatomical structure are shared between the neuromotor systems underlying Xenopus vocalizations and foot-flagging frogs' limb movement and which appear to be species-specific. Overall, we aim to illustrate the power of drawing inspiration from experiments in model organisms, in which the mechanistic details have been worked out, and then applying these ideas to a non-model species to reveal new details, further complexities, and fresh hypotheses.


Assuntos
Androgênios , Comunicação Animal , Evolução Biológica , Animais , Androgênios/farmacologia , Vocalização Animal/fisiologia , Vocalização Animal/efeitos dos fármacos , Masculino , Anuros/fisiologia , Feminino , Xenopus/fisiologia , Membro Posterior/fisiologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Medula Espinal/metabolismo
2.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37625789

RESUMO

Elaborate and skilled movements of the body have been selected in a variety of species as courtship and rivalry signals. One roadblock in studying these behaviors has been a lack of resources for understanding how they evolved at the genetic level. The Bornean rock frog (Staurois parvus) is an ideal species in which to address this issue. Males wave their hindlimbs in a "foot-flagging" display when competing for mates. The evolution of foot flagging in S. parvus and other species is accompanied by increases in the expression of the androgen receptor gene within its neuromuscular system, but it remains unclear what genetic or transcriptional changes are associated with this behavioral phenotype. We have now assembled the genome of S. parvus, resulting in 3.98 Gbp of 22,402 contigs with an N50 of 611,229 bp. The genome will be a resource for finding genes related to the physiology underlying foot flagging and to adaptations of the neuromuscular system. As a first application of the genome, we also began work in comparative genomics and differential gene expression analysis. We show that the androgen receptor is diverged from other anuran species, and we identify unique expression patterns of genes in the spinal cord and leg muscle that are important for axial patterning, cell specification and morphology, or muscle contraction. This genome will continue to be an important tool for future -omics studies to understand the evolution of elaborate signaling behaviors in this and potentially related species.


Assuntos
Anuros , Receptores Androgênicos , Animais , Masculino , Receptores Androgênicos/genética , Anuros/genética , Genômica , Genoma
3.
Immunohorizons ; 5(10): 855-869, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702762

RESUMO

Type 1 diabetes is a chronic autoimmune disease, characterized by the immune-mediated destruction of insulin-producing ß cells of pancreatic islets. Essential components of the innate immune antiviral response, including type I IFN and IFN receptor (IFNAR)-mediated signaling pathways, likely contribute to human type 1 diabetes susceptibility. We previously showed that LEW.1WR1 Ifnar1 -/- rats have a significant reduction in diabetes frequency following Kilham rat virus (KRV) infection. To delineate the impact of IFNAR loss on immune cell populations in KRV-induced diabetes, we performed flow cytometric analysis in spleens from LEW.1WR1 wild-type (WT) and Ifnar1 -/- rats after viral infection but before the onset of insulitis and diabetes. We found a relative decrease in CD8+ T cells and NK cells in KRV-infected LEW.1WR1 Ifnar1 -/- rats compared with KRV-infected WT rats; splenic regulatory T cells were diminished in WT but not Ifnar1 -/- rats. In contrast, splenic neutrophils were increased in KRV-infected Ifnar1 -/- rats compared with KRV-infected WT rats. Transcriptional analysis of splenic cells from KRV-infected rats confirmed a reduction in IFN-stimulated genes in Ifnar1 -/- compared with WT rats and revealed an increase in transcripts related to neutrophil chemotaxis and MHC class II. Single-cell RNA sequencing confirmed that MHC class II transcripts are increased in monocytes and macrophages and that numerous types of splenic cells harbor KRV. Collectively, these findings identify dynamic shifts in innate and adaptive immune cells following IFNAR disruption in a rat model of autoimmune diabetes, providing insights toward the role of type I IFNs in autoimmunity.


Assuntos
Autoimunidade/genética , Diabetes Mellitus Tipo 1/imunologia , Interferon Tipo I/metabolismo , Infecções por Parvoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiotaxia/imunologia , Diabetes Mellitus Tipo 1/sangue , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Parvoviridae/sangue , Infecções por Parvoviridae/virologia , Parvovirus/imunologia , RNA-Seq , Ratos , Ratos Transgênicos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo
4.
Microorganisms ; 8(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093375

RESUMO

Enteroviral infections are implicated in islet autoimmunity and type 1 diabetes (T1D) pathogenesis. Significant ß-cell stress and damage occur with viral infection, leading to cells that are dysfunctional and vulnerable to destruction. Human stem cell-derived ß (SC-ß) cells are insulin-producing cell clusters that closely resemble native ß cells. To better understand the events precipitated by enteroviral infection of ß cells, we investigated transcriptional and proteomic changes in SC-ß cells challenged with coxsackie B virus (CVB). We confirmed infection by demonstrating that viral protein colocalized with insulin-positive SC-ß cells by immunostaining. Transcriptome analysis showed a decrease in insulin gene expression following infection, and combined transcriptional and proteomic analysis revealed activation of innate immune pathways, including type I interferon (IFN), IFN-stimulated genes, nuclear factor-kappa B (NF-κB) and downstream inflammatory cytokines, and major histocompatibility complex (MHC) class I. Finally, insulin release by CVB4-infected SC-ß cells was impaired. These transcriptional, proteomic, and functional findings are in agreement with responses in primary human islets infected with CVB ex vivo. Human SC-ß cells may serve as a surrogate for primary human islets in virus-induced diabetes models. Because human SC-ß cells are more genetically tractable and accessible than primary islets, they may provide a preferred platform for investigating T1D pathogenesis and developing new treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...